ANALYTIC TREATMENT OF TRACKING ERROR AND
NOTES ON OPTIMAL PICK-UP DESIGN*

H. G. BAERWALD**

Summary.—A complete analysis is given of the non-lnear distortions due to the
racking error of ike pick-up mechanism in the reproduction of laieral-cut disk record-
sngs. The separale ireatment of lracking distortion i permissible as long as the
overall distoriion of the reproduction is tolerable, the system being “almosi linear,”
or the various distortion producis superposable.

For the stmplest case of a sinusoidal signal, it is possible 1o derive explicitly the
whole Fourier specirum of the reproduced signal, the mathemalical proposition being
the same as in the mechanical lwo-body probiem. For general signals, an explicit
operational expansion of the distorted signal is obtained.

As the kinemstical effect of tracking ervor consisls of an amplitude conirolled
advance and delay of the pick-up, the harmonic disiortion may be characierised as
made up of the side-bands of frequency modulation of the signal by ilself. Compared
with the ordinary tvpe of non-linear distortion due to curved sialic characterishics,
which may be correspondingly characlerized as amplitude automodulaiion, the spec-
fral characier of lracking dislortion stresses the higher frequency components, For
second-order distorlion which is prevalent, the emphasis is proportional io frequency.

The anglysis shows, thal both absolute and nuisance effects of tracking distortion
are considerably greaier than commonly assumed, published values usually being
underestimates, due lo omission of rigorous procedure. Tracking disiortion is given
approximately by the iracking ervor weighied with the inverse of the groove radius;
the weighted error is referred o the mean groove radius of the record. The recording
charactersstic affects distortion producls independenily of their mechanisms.

Pick-up design as based on ithe analysis should reduce the weighted iracking ervor
as much as possible. For optimal design, Tchebyshey approximation, commonly
used in eleciric wave-filler design, 15 used. For siraight arms, where only one design
parameler, 4. e., the underhang, is available, optimal approximation of sero distortion
s of first order; for offset arms, where both off set angle and overhang are adjusiable,
it 45 of second order und thus much closer. The influence of deviations from optimal
design due to ervors of mounting is investigaled as well as the combined effect of off set
angle and siylus friction on the lifting force and 4is reduclion by suslably modified
design, The compromise desipn of mulli-purpose arms s also ireated. Simple de-
sign formulas are developed throughoul, covering the various record sises, speeds, and
arm lengths. It is found thal offset arms are much superior lo siraight arms. Track-
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ing distortion can be reduced fo neglipible magnilude with properly designed offsei
arms even under adverse conditions, such as short arm lengih and appreciable mount-
ing tolerance.

The tracking mechanism commonly employed for the reproduction
of disk recordings consists of an arm swinging about a vertical axis.
For lateral recordings, the center of motion of the pick-up stylusis a
horizontal axis pivoted in the head of the swing arm. By virtue of
the kinematics of this system, the direction of the stylus tip motion
does not, in general, coincide with the disk radius. The angular
difference, which is equal to that between the direction of the pivotal
axis and groove tangent, is known as ‘“‘tracking error.”” Its magni-
tude and sign depend on the geometrical data of the system and on
the radial position.

It is well known that the tracking error gives rise to distortions.
Aniong the sources of non-linear distortion encountered in disk re-
cording and reproduction, the tracking error is usually considered as
entirely negligible. This, however, is not quite correct. The truth
is that tracking distortion can be effectively eliminated in a simple
way, 1. €., by proper geometrical design of the tone arm. Consider-
able deviations from optimum design, as are sometimes met in com-
mercial pick-ups, lead, however, to quite serious distortions.

As tracking error is obnoxious only by virtue of the distortion
caused, quantitative understanding of the effect is the necessary basis
for tone arm design. Optimal design should minimize tracking dis-
tortion over the entire playing range of the record, which, as analysis
shows, is by no means synonymous with minimizing the tracking
error itself. Although this may sound commonplace, there is the
fact that almost none of the numerous publications on the subject
gives an analytic investigation of the effect. This omission fre-
quently leads to erroneous results regarding optinum tone arm de-
sign, as in a recent paper by G. E. MacDonald;! or it leads to con-
siderable underestimations of the magnitude of tracking distortion
and of its nuisance effect which depends on its spectral character.
"This is the case in a frequently quoted paper by B, Olney® who gives a
lucid qualitative description of the effect and considerable experi-
mental material. E. G. Lofgren,? who first pointed out the error in
reference 2 is, as far as the writer is aware, the only author who at-
tacked the subject analytically and also discussed design questions on
this basis.
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The present paper gives a rigorous analysis of tracking distortion
and develops the geometrical tone arm design on this basis.

Part I—Analytical Investigation of the Tracking Error Distortions

s = cofirdinate along the unmodulated groove el
y(s) = laterally recorded signal T
Y(s) = stylus elongation or reproduced signal

9 = angular tracking error {radians or degrees)

e w distortion parameter .

o = weighted tracking error defined in the text

t = time )

d
w(l) = d—:' = velocity of recorded signal

Vi) = 3—-}’ = velocity of picked-up signal

o angular disk speed in sec™! = 3—“[.)- X speed in rpm

r = radlus of an arbitrary groove

ri} f2: fm =V riry = inner; outer; mean groove radius of a disk record
w = recorded angular frequency in sec™!
¥o = recorded amplitude

s = wye = recorded velocity amplitude

A = recorded wavelength

¢ = recorded phase

¢ = picked-up phase

of a sinusoidal sighal

(@) General Considerations.—Fig. 1 gives a picture of the stylus
motion. The curve y{s) represents the center line of the laterally
displaced groove or the recorded signal. Due to the angular error 7,
the instantaneous position of the stylus tip P becomes 5’ instead of S,
{. e., its abscissa is displaced by As. The relation between the re-
corded elongation y(s}, the picked-up elongation ¥{s), and the in-
stantaneous shift As is evidently

Y(s) = sec n-9(s -} As); As = tanq-y(s + As) {1)

Kinematically, the effect thus constitutes an alternating advance
and delay of the reproduced signal with respect to the recorded one,
or a ‘frequency modulation” of the signal by itself. The associated
harmonic distortion can be interpreted as the '‘side-bands" of this
auto-modulation. This interpretation may prove helpful for the
understanding of the results of the analysis. It leads to the antici-
patory result that, due to the increased depth of frequency auto-
modulation, harmonic distortion of a given signal should increase with
decreasing groove velocity. For a given distortion limit, larger
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tracking error should thus be permissible at the outer grooves of a
record than at its inside. This is confirmed by analysis.

Fig. 1 represents idealized conditions, as the finite dimensions of
groove and stylus tip are neglected. As kinematic implication, the
effects connected with the groove geometry, which give rise to tracing
distortion,* are thus ignored. As mechanical implication, the elastic
deformations caused by the bearing weight and the lateral stiffness
and inertia forces, are neglected. They lead to both linear and non-
linear distortions, but only the former have been investigated so far.®
They are refetred to as “‘playback loss.””® While in the strict sense,
tracking distortion and harmonic distortion from other sources in-
herent in the playback process, are interdependent, they can be

¢
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F1G, 1. - Idealized reprezentation of tracking.

treated as superposable under practical conditions, 1. e., as long as the
square of relative overall harmonic distortion is small compared with
1. This corresponds to *‘almost-linearity” as put forward by Feldt-
keller and others.® Thus the idealized picture represented by Fig. 1
and equation 1 is usually adequate for the treatment of tracking dis-
tortion, if y(s) signifies the signal as modified by the linear effects.
As the playback loss is usually positive, the neglected effects would
tend to reduce tracking distortion.

(b} Rigorous Solution for a Sinusoidal Signal; Bessel's Solution of
the Kepler Problem.—The relation 1 is an implicit equation involving

* It is further assumed that no tracking error is introduced by the cutter, The
distortions due to angular errot of the cutting tool which may be present in home
recorders, are of a more complicated character and will be treated in a separate
paper.
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the unknown shift As. In order to obtain from it the tracking dis-
tortion explicitly, the picked-up signal ¥(s) has to be expressed in
terms of the recorded one, y(s). The desired result will be obtained
in the form of an operational expansion, similarly as in other cases of
calculation of modulation products.” Before, however, taking up
the general case of complex signals, we shall deal first with the sim-
plest case, 1. e., with a sinusoidal signal

¥(s) = yosin g;—' $ == yo sin o, (2)

for which the solution of equation I can be obtained in closed form.,

- —
~_ 7

AT
NP ~_7

F16. 2. Geometrical construction for sinusoidal signals.

The picked-up signal can be described correspondingly by means of a
phase angle ¢ 7

_ ¥(s) = 3o sec  sin ¢(s) . &)
The simple graphical construction of 3 from 2 according to equation
1 is carried out in Fig. 2 for an exaggerated case (y = 30°), in order
to make the distortion plain. The corresponding implicit relation is
evidently: :

\""llSiﬂ\f'=w; cES!r%"tanq# distortion parameter. (4)
Introducing time as the independent variable, by means of the rela-
tion

2r w
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it follows
y(f) = v st wl = ypsin ¢ (2a)
and |

distortion parameter « = 2% taqn 5 = T ta09
P ‘Tera T Tm

{4a)

where v denotes the recorded velocity amplitude while rQ is the longn-
tudinal groove velocity. :

As a matter of historical interest, it is worth pointing out that the
solution of eq. 4 or Fourier expansion of ¢ in terms of o, 4. ¢., the track-
ing distortion of a sinusoidal signal proves to be the same mathemati-
cal proposition as the classical two-body problem of celestial mechanics
(Kepler problem), which involves
the description of the (undis-
turbed) motion of a planet about
the sun in terms of the phase of
its period of revolution.  This is
briefly illustrated in Fig. 3 which
shows the Kepler ellipse with the
half-axes ¢ and b and the foci S
and S, representing the orbit of
a planet P about the sun S;*
the generating circle of radius a

¥16: 3. Representation of planetary i glso shown. The numerical
motios eccentricity of the ellipse is
= V 1 — (b/a)’. The instantaneous position of the planet is
usually characterized by the focal phase ¢ or by the central angle ¢
(both measured from the apex A4), the so-called *“true anomaly” and
“‘eccentric anomaly,” respectively. Quantitative description of the
planetary motion requires an expression of these angles in terms of
time ¢ or of the phase angle (“mean anomaly”) ¢ = 2xt/T (T =
period of revolution). From the well known geometrical relations
between focal radii and anomalies:

Py 1+ . . V1 — &gingd
= - H 5= Ay tang; = TFesmoa '
r m a{l ~ ¢cosy) 1_19‘112 'Jl—z nzsmv.b 14 esind e

and from the dynamical theorem of the invariance of the momentum

* Actually, S represents the center of gravity of sun and planet; as, however,
the mass of the sun is usually very large compared to that of a planet, the differ-
ence will be negligible,



Dec,, 1841] Oprmmar Pick-Ur DEsicN ' ba7

vector (Keplet’s second law), which requires the orbital area (shaded
in Fig. 3) to be equal to the mean anomaly:

-J:"ri(e)da - Ts -

there follows, by elimination of ¢, at once the relation
¢ —esinyg = g, - 4

This is identical with 4 and 4e; eccentricity, mean, and eccentric
anomaly correspond to distortion parameter, phase of the recorded,
and phase of the picked-up signal, respectively. Equation 4’ was
first given by Lagrange® in a famous memoir in 1770; he obtained
power expansions of the first three Fourier coefficients of sin . The
complete solution of the problem (including the Fourier analysis of ¢
and r) was obtained by Bessel’ in 1824 in a classical investigation
where he introduced his well known integral representation, and
which is considered as the beginning of the modern theory of Cylinder
Functions.- (For historical notes see Chapter I, Part 1.4 of Watson’s
Treatise.)9) ‘

The solution of 4 follows at once upon application of the Bessel-
Sommerfeld integral (see!® Chapter VI, or,!' or ¥); it may be found,
together with related results, in Chapter XVII (Kepteyn Series), No.
17.2, pp. 551-558 of Watson's Treatise;

Yu;‘i?secq-_. J.(m) sin nwt; ¥ == V(!) = 1, secq- ZJ'("‘)coshwt(ﬁ)
® / at £ 1/

{J, denotes the Bessel function of sth order.)

“-

Apart from the factor sec 4, the relative amplitude @, of the funda-
mtental frequency is thus Ji(e)/!/s¢, those a, and b, of the nth har-
monie, J,(ne)/ /e and J,(ne)/1/s¢, for the picked-up elongation and
velocity, respectively. The relative harmonic distortion is defined by
the rms values

. respectwely.

z TR g

o]




598 H. G. BArrRWALD (7.8 M. P.E.

By virtue oi‘ the well known relatxon

apd = }. Ve ) bt =2 Vi(y)de,
27 @)

1

we obtain

Z“" = (secn)'- L, sintvde = = (Basea)"1 [ cin ey =
(=)

by virtue of 4. Similarly,

Zb..’ = (ﬁ secv)'-}r ﬁ"}(oos %:——g

1
(vo sec )2 lfa cos® ¢ {vo sec »)

r)l-tcosl}' ‘\/1—1"/;(1‘-{"'\/1--')
Therefore relative harmonic distortion

of ¥: ‘\/ J'(‘) 5(1 m(i) +1152('2’) ) 1

%%(é)'"-),

(¢) Discussion—The Prevalent Type of Distortion—Equation 7
shows that if the relative rms distortion is restricted to moderate
values, the 1st term alone: /2 or ¢, on the basis of elongation or
velocity, respectively, gives a satisfactory approximation, The next
higher term is negligible for overall distortions even as high as 50 per
cent. The first term represents the relative amplitude of the second
order harmonic a; or by, respectively; this is seen from 6 upon substi-
tuting for the Bessel coefficients the initial terms of their power ex-
pansions, The relative amplitudes of the higher-order harmonics are
of correspondmg order in ¢; they are

(VLD P L) g ’
e PV Th m""‘ﬁ‘_'d’ :
Under normal conditions, the distortion is therefore essentially of
second order. For complex signals, the 2nd-order cross-modulation
products will thus be the prevalent distortion compoxents,
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(d) Distortion Spectrum of Complex Signals—For general signals, a
solution of I in closed form does not exist. Expansional solution is
thus called for and can be expected to converge satisfactorily, in view
of the rapid convergence of the expansions in case of sinusoidal signals.
The implicit form of equation I would require an approach by itera-
tion; it is possible, however, to obtain the final result at once by
means of a well known expansion theorem due to Lagrange'® 4* which
is a special case of Teixeira's Theorem.'* The simple intermediate
calculation is omitted. The result is analogous to that for the sinu-
soidal signal, egs. 6 and 7, the relevant quantity, ¢. ¢., the distortion
parameter ¢ = (wys/rQ) being replaced by the distortion operator

tan n/ rﬂg-t applied to y(#):

cosy- V(f) = y(t+ Af) = Zﬂl Y omm)
% =]

®
V) = T8 1 ftanqd\" .
cos 9:V() = % 1:”,( e 2) o)

or symbolically:
tan nd
cos - V(i) = -—_[ S alo® _ 1]. (8a)

(For sinusoidal signals, & is re-obtained from 6 by means of the power
expansion of the Bessel Functions—as it must be.)

Similar considerations as in the case of a sinusoidal signal show that,
for moderate overail distortion, the first term, which represents
second-order distortion is in general predominant:

cos 9+ ¥(0) — 3() = ‘%’5(1’) +

. (85)
cosq- V() — olf) = "‘“” (")+...

For the ordinary type of non-linear distortion as met in tubes, elc.,
the distortion terms corresponding to 85 would be const. ¥2/2 and

const. (d/di){v?/2), respectively. It will be appreciated that it is

* The convergence conditions are automatically fulfilled by virtue of the limita-
tion of the frequency spectrum inherent in the recording process: y(s) is, theres
fore, continuous and of bounded osciliation.



600 H. G. BAERWALD [J.S.M. P.E.

appropriate to interpret the two cases as amplitude and frequency
auto-modulation. In order to illustrate the difference between the
two asgociated distortion spectra, let us consider the simple two-
companent signal*

' () = y, sin et + 35 sin et - (9)
For the case of ordinary second-order distortion, we obtain, in addi-
tion to ¥ itself, the following distortion components:

Frequency 0 e Qi Jen — wsl wy -+ we
c ¢ ¢

Ampl ={y? b 1 3

Amplitude 2(:_;: + 3 pe el Ny €Y1¥s

where ¢ denotes the second expansion coefficient of the normalized
non-linear characteristic. For the second-order tracking error dis-
tortion of the same signal, we obtain {rom 8b

Frequency O e 2004 |m-wg! an -+ o
tang wm* tany y' tang ny  tann MY
_Amplitude 0 % %2 o ]m wz[ 2 e (1 1+ o} 2

It is seen that the amplitudes of the distortion components are
weighted with their respective frequencies, relative to the former case;
this corresponds to the application of d/df. Comparison on the
velocity basis, which is more appropriate to the major part of the
conventional recording characteristic, gives the corresponding result

Frequency 2 ‘ Sy !m — ml wy + wy

n? s g = )
Amplitude, ord. dist.  ¢— s c1;-—"—"—'w, c—i‘i'mg
. wy "™ wiwy Wy
Amplitude, track. tanp  tany . tany (w — )t tan n (o -+ m,)’v .
' etror 0 e 0 Zows O Zow

* 1.6fgren? carries out, and points out the salient results of, the multi-component
signal analysis, but he does not give the general expansion & &a. Application of
the Laplace integral (spectrum analysis) to the general expansion & would yield
the spectra of the distortion components of #th order of signals with continuous
aend/or line spectra. The character of such distortion spectra was studied and
discussed by Lewis and Hunt! for the tracing distortions. It could easily be
carried out in the same way for tracking distortion, but this does not lead to any
fundamentally new conclusions pertinent to tone-arm design, beyond those based
on the simple case 9. Tt should be mentioned, however, that the spectrum of
‘Jateral tracing distortion, which Is of odd order only, is weighted with a power of
frequency still higher—by .one—than that of tracking distortion.
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(e) Nuisance Effect of Distortion; Influence of Recording Character-
istic; Permissible Size of Tracking Evror; Weighted Tracking Error.—
The definition of the distortion parameter ¢ (eq. 4¢) can easily be ex-
tended to the two-component signal 9. In particular, for y; = !

¥ = yolsin wi? -+ sin wit), . (9a)
we obtain
ﬁ!"ta—n;’ﬂi"’; wp = Vo {¢b)

Let us compare the second-order ordinary-type and tracking distor-
tions of 9¢ on a common basis, 1. e., for equal rms values, whereby the
d-c component is not counted as it is without significance for electro-
acoustic purposes. The ratio of the distortion parameters ¢ and ¢
then becomes
=030 +a ) a=
L {/] Wy
This gives, apart from a common factor, the following values for the
amplitudes of the distortion components: :

Fre- .
quency 2w 23 oy — o (o -+ wa)
Ord.
type V0.8 +a-1) V0.3(a +¢-1) 24/0.3(a +a-Y) 2V 0.3a + o)
1 1 1
Tr. err. — _ = _—
r. err p Ve Ve v Ve + e

If (w1, «s) represents a consonant musical interval, the second-order
modulation products are also consonant with it, with the possible
exception of the summation tone. For instance, for a Fourth with
o = %/; (in the natural scale; 25/1* = 1.3347 according to equal tem-
perament}, the difference tone is 2 octaves below wy, 4. €., consonant,
while the frequency of the summation tone is 7/y times that of the
octave of w,; this does not représent an interval of the musical scale
and is therefore dissonant. For unity rms value, the relative ampli-
tudes are in this case: -

Frequency ' 2 pLI g — ey (o1 -+ ws)
Ord. type distortion 0.318 0.316 0.632 0.632
Track. err. distortlo:l {.348 0.462 D.115 0.808

This is represented in Fig. 4.
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The preceding considerations show that the spectral character of
tracking distortion is roughly taken into account on the velocity basis.
This means that the distortion parameter ¢ as originally defined for
sinusotdal signals gives a fair estimate of the relative tracking distor-
tion produced by comiplex signals, if « signifies a dominant frequency
range and ¥ a suitable average amplitude. (If the distortion were of
the ordinary type, ¢/2 would have to be used instead.)

The spectral character of all kinds of harmonic distortion” produced
in the playback process is uniformly modified by the playback fre-
quency characteristic which is the inverse of the recording character-

|

L X 5 QI 11 AITOAW
O = DAY 2U70PTIN
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"é:ﬂ-:’ T e ry
%30 "0 1 0535 {
ordinary distartion

. Fi1c. 4. Comparisonoftrackingan _ o
:bf:.- -j' s . spectraofatwo-componentsignn.l L e

?’ist:c ‘In case of the conventxonal oonstant—velomty characteristuc,
for instance, distortion components are emphasized, in playback, pro-
portionally to their respective frequencies.® It can be generally
'shown that, for any particular distortion term, the effects of the play-
back characteristic and of the distortion mechanism itself simply
superpose; the relative amplitude of any resulting distortion com-
ponent is thus the product of two mutually independent factors.
For instance, the relative amplitude of the second-order distortion
component of frequency w,, which is produced by the two signal com-

* The emphasis of the constant-velocity characteristic on the higher distortion
components is stressed in Guttwein’s paper.®
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ponents of frequencies w, and w;, is proportional to Flw,; wp; wp)-

f (j;)f () wp) where f(w) denotes the recording characteristic and F(w,;
@y

wy;, wp) accounts for the d:stortton mechanism; in case of tracking
distortion, Fis given by the second table following 9.

The physiological effect of harmonic distortion of a given rms value
is usually increased by high-frequency emphasis.'® It follows that
tracking distortion—in particular as produced by signal components
of large amplitude in the upper middle audio range—will have a rela-
tively high nuisance effect, not adequately accounted for on the
elongation basis.?

The preceding analysis and discussion of tracking distortion fur-
nishes the basis for rational pick-up design. In order to have a fixed
aim, it is useful to set a limit of permissible tracking distortion, in
terms of the distortion parameter e. This limit should be kept low,
for three reasons: (I) The nuisance value of tracking distortion is
fikely to be increased on account of high-frequency emphasis; (2) an
amount of harmonic distortion too small to be troublesome by itself,
may become so when superposed upon distortion which is already
appreciable. This is the case here, due to the presence of harmonic
distortions obtained in cutting, pressing, and playback, more often
than not in objectionable amounts; (3) while, in the present state of
the art, the overall effect of these distortions, whose mechanisms are-
still partly unexplained, can not be reduced below nuisance level
under commercial conditions, it is possible to eliminate tracking dls-
tortion substantially by proper tone arm design.

For these reasons, an upper limit of harmonic distortion—as repre-
sented by |e| the absolute value of the distortion parameter—of only
2 per cent is postulated for a signal level of 8 cm/sec velocity ampli-
tude, over the whole playing range of any record size and speed for
which an arm is designed. This corresponds to 1 mil elongation at
-500 cps and represents approximately maximum conditions in trans-
cription and about half the permissible amplitude in commercial re-
cordings.

The two conventional speeds and assocmted playing ranges are

331/, TP, 71 min ~ 31/s inches, 73 max ~ 8 inches for transcription and
78 rpm, 11 mia ~ 2 inches, 73 ma, ~ 6 inches for commercial disks. The
associated minimum and maximum groove velocities are 31 and 413/,
cm/sec, and 71 and 124 cm/sec, respectively. With the limit set
for ||, the maximum value of [tan 4| occurring under any conditions
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is then 0.3, according to 4a. It will be seen later that it is usually con-
siderably smaller, It is thus permissible to neglect 2/2 against 1,
1. e., toput '

tany & g = siny, cosy = 1:|.1-ﬂﬂ33!_|. (10)

As tracking distortion is inversely proportional to the groove radius,
it is preferable to use for design purposes the

weighted tracking error ' = r;’!'n " (1

which is referred to the mean groove radius 7,,, rather than » itself.
Distortion is then proportional to »", independently on the radius r.
The factor of proportionality becomes 17 for transcription recordings
with vy, ~ 8 cm/sec, 22 for commercial disks with vy, ~ 16 cm/sec.

Distortion | ¢ [max(itt per cent) ~ (17 to 22)-| 4" | (in radians). (12)
FOr |¢|max = 2 per cent at v = 8§ cm/sec, it is thus [n’[ma. ~ 0.12 and
0.18 for transcription and commercial conditions, respectively. For
the tracking error itself the following upper limits are obtained:

41/5 to 10° for transcription, 6 to 171/:° for commercial disks, for
f = 7 min OF = ¥3 00,

PART O—PICE-UP DESIGN FOR MINIMUM TRACEING ERRCOR DISTORTIONS

Additional notations

L = length of tone arm (swing axis to stylus tip)
L 4+ d = distance between turntable axis and swing arm axis ; (see Fig. b)
(d is called ““underhang®’ if > 0, “‘overhang” if <0)

d .
EE = numerical nnder- or overhang

__.._r . BJ d. . =’1: % m
x =7 numerical groove radius; xy; ym =",
n 1 - 1 Bt
o= _2(\/“ + \/E) 2m

n'1;2 = weighted tracking error for r1; 2; n's == 2'(%) = extremum of the weighted
tracking error

v = angle between groove tangent and line from stylus tip to swing axis

a = angle between direction of pilvotal axis of stylus and line from stylus tip to
switg axis—''offset angle” B

Sopt; Qopt; b cropt; cerie; @':  explained in text

Tu(x) = Tchebychev polynomial of #th order



Dec., 1041 -~ OpTIMAL Pick-Ur DESIGN 605

P = bearing weight of stylus

F = longitudingl friction force between stylus and groove
F, = horizontal centripetal component
F, = vertical component

p = coefficient of friction between stylus and record groove

in grams
explained in text

(2) Geometrical Relations; Tchebychev Method of A pproximation.—
The geometrical conditions are represented in Fig. 5 for both straight
arms (left side) and arms with offset head (right side). In both cases,
C represents the axis of the turntable, 4 that of the swing-arm, P the
stylus point, and D the intersection of arm radius with the line CA4.

P g ¥

P ROGYE
r= TANGENT
GROOVE of
TARGENT L PIVOTAL
PrYOTAL - AUS
ALY
z al jc A
i I_ Lrd
~Led o

Fic. . Geometry of straight and offset tone arms.

Itis _
rt—2d — d*__x* — 25 -
2r _ 2%

x? — 25 — 3%
2x

sinmg = sin ¢ = L (§ > 0), for the straight arm

(23)
=7 = asiny= {3 < 0), for the offset arm
With the approximation 10, this gives for the weighted tracking error
7', according to 11

7 = ’E’L‘(l -2+ 5;). for straight arms
. 2 x
(14)

' Xm (1_28+ﬁ’“25ina
o

- , for offset arms
K 2 cos x? x )

An arm that is designed optimally for a single speed and record
size, will be called single-purpose arm; otherwise we speak of multi-
purpose arms. Single-purpose arms will be treated first.

The design should minimize tracking distortion over the whole
playing range by suitable choice of the design parameters. In case of
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straight arms, only one parameter is available, ¢. e., the underhang,
whose optimal value turns out to be positive under any conditions
(Fig. 5, left). Offset arm design has two parameters available, 3. ¢.,
offset angle and underhang; it turns out that for optimal design, the
latter is always negative, and thus constitutes an overhang (Fig. 5,
right). ‘The result, namely the tracking distortion for optimal design,
will appear in terms of the arm length. This will yield the minimal
length compatible with a prescribed distortion limit.

The design reduces to elementary procedure as soon as a definition
of minimum distortion over the playing range is agreed upon; in
other words, we have to decide, which function »’(x) containing the
parameters « and & (or & alone in case of the straight arm) should
represent the "‘best” approximation of the ideal 4' = 0 in the playing
interval a1 € x € #2. In general, the success of the approximation, in
a prescribed interval, of a given function by another that contains
adjustable parameters, can be judged by different criteria. For in-
stance, minimal rms value of the difference may be postulated (this
wotld imply the well known method of least squares). More gener-
ally, any monotonic increasing function of the différence, integrated
over the fundamental interval, could be chosen as criterion. In par-
ticular, this “weight function” by which the setriousness of .local
deviation is gauged, could be chosen as zero below a certain limit
which should be made as small as possible, and very large above this
limit; in this case, that approximation is considered best, for which
the maximum of the absolute difference between the two functions or
their “tolerance” becomes minimum. This mode of approximation
was proposed and investigated by Tchebychev? and has recently
found ingreasing application in engineering, e. g., in the design of elec-
tric wave-filters.}®1® Tchebychev's approximation is appropriate
whenever deviation becomes rapidly objectionable beyond a certain
limit. This applies, more or less, to the nuisance value of harmonic
distortions. It seems therefore that the tone-art design should be
carried out in the Tchebychev manner, provided that the associated
calculations are not unduly complicated. They will actually prove
to be of satisfactory simplicity. As a matter of fact, the relation 14
19 so simple that almost any mode of approximation could be used on
that account. While the design is not greatly altered when applying
different types of approximation, it seems that the Tchebychev man-
ner is somewhat preferable to the minimal mean square suggested by

Lofgren.? .
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Tchebychev has proved that under rather general conditions the
smallest tolerance between the given and the approximation function
is obtained if the available parameters are so adjusted that the differ-
ence alternates as many times as possible in the given interval be-
tween the positive and negative tolerance. This is precisely the result
one would expect. The point is illustrated in Fig. 6, which shows the
graphs of the first four Tchebychev polynomials T,(x); n» = 1..4,
defined as those polynomials of #th degree with the coefficient 1 of x”,
which approximate the function x = ( with the smallest tolerance in
theinterval —1 € x § +1. They are?®

Tu(x) = 2~ cos (n-arccos x);

| J I%'}{’f\ <,
T RIS
/ )% 3

x|
= =
o

Fig, 6. Plots of the first four Tchebyshey polynominals and their geometri-
cal constriction,

—

1. ., Ty(x) oscillates between the tolerances =1/2""", reaches them
at the » 4 1 locations x, = cos kx/n; k& = 0, 1, ..., #, and goes
through zero at the » points x,, = cos(m — V)a/n,m = 1,2,. .., n.
In the general case where the approximation functions are not
polynomials and this symmetry is no longer present, nth-order
approximation is still characterized by the fact that the tolerance is
-reached {n 4 1) times, including the ends of the interval. 1n general,
the order of the approximation is equal to the number of available
parameters. Consequently, the best approximation to be expected
for straight arms is, in general, of 1st order, with 4’ running from
— % max &t r = 7, through 0 to +9'p,; at 7 = ry, the distortion being
equal and maximum at the ends of the record; in this way, the small-
est maximum distortion is realized. For the offset arm, second-order
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approximation should be obtainable with the tracking error passing
twice through zero and the distortion reaching the maximum value
three times, £. e., for 7, and 7 and an intermediate radius r,. Con-
siderably smaller values of distortion can be expected for the offset
arm.
(b) Stngle-Purpose Straight Arm Design.~~Tchebychev approxima-
tion of the underhang in eq. 14 for a = 0 gives the following results:
Optimal underhang
- x? 4z . = nirgd

b = A1 7 1 gy e e 0

Maximal weighted tracking error

xm_a’nlﬂ‘\/;l—;:.ﬂ’—ﬂ’
B @t 1 2L 1 ot (15b)

Mazximal harmonic distortion, according to 12

Il = 0’ = 2 lmax =

lelsx (%) ~ (8 to 11) - "f’”-;:;:_—:g 15¢)

"Wﬁghted tracking error as function of groove radius

1
7 Yale+et) — x—;‘) S 2”’%’-

g (15d)
W e 1/y(a — 871) rs? — !t

— . Tifs

‘l[,ll:s‘l:ortion venishes at r = ——mm——c AEET] (15¢)

In Fig, 7, equation 18d is plotted as '/ l-q’ I,-.m 95, %)%, = 1/ A/ 111, foOr
the three valuesa = 2, 3, and 4. When inserting the numerical values
of the playing ranges of transcription and commercial disks, as given
at the'énd of Part I, one obtains

30 to 81 '
telaz (%) ~ Linehes) sf)

This shows that for correct mounting, distortion can just be kept
within the limits set previously for commercial recordings with the
conventional arm length of 8 inches, while for high-fidelity achieve-
ment in transcription, L should be not less than about 15 inches for a
straight arm. For these conditions, the actual tracking error be-
comes about 4.5° at the extreme inner, about 10.3° at the outer groove
for transcription, and about 5.9° and 17.8°, respectively, for commer-
cial recordings. :

Incorrect mounting may increase tracking distortions considerably.
The quantitative influence will be discussed later on for both straight
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and offset arms. 1t will be found that, for straight arm mounting,
conditions are much more critical at the inner end than at the cuter
end of the playing range, and that therefore a mounting error which
reduces the underhang slightly below the optimal value 15a is much
less harmful than an increase by the same amount. For instance, for
an 8-inch arm and 12-inch disks, equation 15a gives dy,, = 0.438 inch
= 7/iqinch, It is found that an increase by only /s inch would in-
crease the maximal distortion by 33 per cent. A decrease of d by the
same amount, however, would increase |¢|mex by only 3.7 per cent.
It is thus safe to keep somewhat below rather than above the opti-
mal overhang.

(¢) Stingle-Purpose Offset Arm Design.—The second-order Tcheby-
chev approximation gives the following optimal values:

Optimal offset _
1+ n

. 2pxm rs -+ r1\* ‘
. sm Qppt = p’_—i:_l = L[( 2 ) + 1] {160)

LE T8

Optimal overhang

rary

. fa-l-"l
P e P B [( S, ]

rar

Maximal welghted tracking error; maximal harmonic distortion

Pt~ 1 T ("s - "!)’
(A P— P+ 1 2cos anpt SL\/nh

C2mEc)

Weighted tracking error as function of radial position

xm\?
' p— _ 2nn )
r = 2 _(____’_____x___ -1 52[" +n r — 1. (16d)

5 Jelms ~ (18 = 22)- ilmax( (259

]"l' Imu P — 1 | —
8| = Jn'lmex Bt s = i, 7 = 13, and 7o = r:ztlirln
2riry (16¢)
= (Qatr = T
7' atr (1 rs+ ( -\/ﬁ) "
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Fig. 8 shows »’/ Iq’ [m“ vs. r/r,,, again for the three valuesa = 2, 3, and
4. Comparison of the Figs. 7 and 8 with 6 shows that the two classes
of curves correspond, in their character, to the first two Tchebychev
polynomials 7} and T2. With the values of r, and r; used previously,
it follows then

3.7
(Eranscription)
Linc an 1 53"
lelemas (%) = Vi ";_’5 63) (16)
(commercial)

‘\/(L(inehﬂ))' - (3.4)’ -

This shows that with an accordingly designed offset arm, it is possible
to obtain practically distortion-free tracking even with arms of the
shortest practicable length, which is somewhat more than the disk
radius.

This result is important as it implies a considerable flexibility of
pick-up design, which is necessary in order to meet a number of prac-
tical requirements which so far have not heen taken into account.
One of these factors is the limited accuracy of mounting under prac-
tical conditions of production and service. This affects only one of
the two parameters, namely, the overhang. It is necessary that the
maximum distortion occurring within the playing range does not ex-
ceed the prescribed limit as long as the deviation from the optimal
overhang 16b is kept within reasonable tolerances. Another prac-
tical factor which has not been considered so far, is connected with
the tangential friction force of the stylus in the groove. This gives
rise to certain adverse conditions discussed below which depend on
the ofiset angle and are improved by decreasing it from its optimal
value'16a. Finally, multi-purpose tone arms must be designed on a
compromise-optimal basis for playing commercial as well as trans-
cription records. This implies deviations fgom optimal single-purpose
design and thus an increase of the maximasal distortion. The result
16f shows that with the theoretical optimal design, tracking distor-
tion is still considerably below the permissible limit even for the short-
est practicable arm lengths. Thus it can be expected that sufficient
margin is left for taking into account the three factors just mentioned
by compromise design not.requiring increased arm length, which is
undesirable for economic reasons. For straight arms, on the other
hand, this is indeed the only means to meet the situation, as seen from
15¢ and 15f. This flexibility of the two-parameter design demon-
strates the superiority of the offset head. .
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It is now necessary to investigate the influence of the stylus friction
as well as the general dependence of the maximum distortion on «
and & on the basis of 14.

(d) The Influence of Stylus Friction.—Only part of the friction force
F between groove and stylus is taken up by the tone arm as this can
freely rotate about the axis A (Fig. 5). The remaining component
Fy = Ftan v is taken up by the groove wall (Fig. 5). Evidently, ¥,
and therefore Fj, increases with the offset angle, and for near-optimal
offset, F is centripetal throughout the play range. This gives rise to
an undesirable excess pressure on the inner groove wall which may
increase the linear translation loss and create even-order distortion
components due to asymmetry of wall deformation.® Because of the
groove wall inclination, F), creates a vertical component F,, which is
directed upward. For light-weight pick-ups for high-fidelity repro-
duction,®" ** where the bearing weight is kept to a minimum sufficient
to overcome the vertical components of tracking and tracing forces—
particularly due to pinch-effect?) 24—and spurious accelerations due
to unevenness of the record and ambient mechanical vibrations, the
influence of the additional force F, is sometimes considered so detri-
mental that return to the straight arm is advocated.

A fair estimate of ¥, can be obtained for soft records where stylus
pressure is most critical. Measurements of the friction for cellulose
nitrate show that, from about 10 grams up to a “critical’’ bearing
weigh;t P of 25-30 grams where record wear sets in, F increases lin-
early with P, according to the empirical relation

F = 37+ ;}; (Fand P in grams) (17a)

(Ref. 21, Fig. 8, p. 215.) Fy is resolved into three components, 1. &.,
one normal to the groove wall, one tangential (frictional), and the
vertical, F,. For a groove angle of 90 degrees, F, = F,(1 — p)/
(1 + p), where p denotes the coefficient of friction between groove
wall and stylus. v = « 4+ 3. It will be shown below that 5 attains
its largest positive value at the outer radius for any design with a« &
agpe (16a) and optimal overhang. This gives :
(Fuas = (3+ 3) 132 tan (o + m) (grams)

It will be shown that under practical conditions {(« + 1) will never
exceed 30 degrees appreciably, while p will not be smaller than !/,, the
value of the corresponding coefficient in 17a. With these assump-
tions,
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<124 P

(Flmex = (1.8 + 0.16P) - tan (& + m) L 7 ¢

(grams). (I7d)

(For offset angles a@ 2 agpe, it will be found that |g]y,, is small com-
pared with @; then tan o may be substituted in 175.) For a bearing
weight of 156 grams—approximately the lowest commercially avail-
able—equation 17b gives (Fy)max = 1V/2 and 21/; grams for o + 9 =
20° and 30°, respectively; for the *critical” weight of 30 grams, 2.3
grams and 3.6 grams, respectively. Considering these values, it must
be borne in mind that only the difference between tan ns for the straight
arm and.tan(a + #) for the offset arm represents the increase of F,
due to offsetting. As 7z is much larger for & = 0 than for & = oy,
this increase of F, is considerably smaller than F, itself, usually one-
half or less of the values found, as will be shown by numerical ex-
amples. It appears therefore that even for the lowest bearing weights
commercially used, the increase of F, due to offsetting is inconsider-
ablé, and that there is certainly no reason for giving up the offset
with its inherent advantages on that account. However, a choice of
o somewhat < e, (162) will give some benefit without exceeding the
permissible distortion.

(e) Compromise Design and Influence of Mounling Error—It has
been shown that for practical reasons, it is partly desirable, partly un-
avoidable to deviate from the theoretical optimal design values 16.
In order to see how far one can go in this respect without infringement
on the distortion limit set, the dependence of distortion on « and &
according to I4 must be investigated. For this purpose, it is useful
to introduce the numerical radius

—05 — 5t

H= —na 1)

where 3’ attains its minimum »'y. In terms of xy and sin e, it is

S L. gl—Si‘;“(z—xﬂ)E (18a)

2oz a

Starting from « = 0, let us first increase the offset continually under
adjustment of the underhang or overhang é for Tchebychev approxi-
mation. Between a = 0 where § > 0, and @ = oy, where § < 0,
there must be an angle ay for which § = 0, 4. e., where the stylus tip
passes through the center C (Fig. 5). It follows

' XXy "y

L Xy _
sin ap = 2—13’ = et oIt T s 8lag) = 0. (19)
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This angle is convenient from the point of ease of mounting. For ay,
the radius xa (18) becomes zero; it is negative, 1. e., has no significance,
for & < ap. For oy, % is thus still outside the playing range »; < x £
xs, which implies that the 5’ (x) is monotonic increasing over the play-
ing range, like the curves of Fig. 7. With further increase of o, how-
ever, xp becomes = x;, Then the curve #’(x) has a horizontal tangent
at x = x. ‘The corresponding value of « is called o, and it follows

X1 L i
o = 1y B 'EL[I_,l(l_r_l)T 20)
2 Xz § '] )

For & > agy, the curve 3’'(x) has a negative slope at ¥ = x; up to the

L

[

B E

Liw.vavi
£§ 1537 v 2

Fig. 7. Relative weighted tracking error vs.
relative groove radius for straight arms.

minimum aty = x; then it increases again to #’>. Tchebychev’s
approximation is then obtained by making |n'e| = |7%] = |7'|max, and
not by || = |n's|, which would give a higher value of |5’ |mee. (This
is readily shown and follows also from continuity with the domain
@ < Ogye.) The value n';, which in this range of values of o does not
play any part in the Tchebychev design, lies between n’y = —1/ s
and %'s = 47'ma and increases, with increasing «, monotonically
from —g'pa, at @ = ey t0 47’ max fOr @ = a,y (eq. 16a). This case,
which has already been dealt with in equation 16 and Fig, 8, repre-
sents the second-order approximation. Increasing o beyond a, leads
into the domain where —4’y = 5'; = |n’ [mu and ;s < ';. Finally,
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there should be an upper critical value of a where 1’; has decreased to
—1’g, and x has increased to x».  For this offset angle,

Xz
_ 1 X2 2 . )
- ((E) )
For practical values of x; and a3, this leads to imaginary a, 1. e., under

actual conditions, x; < a3 for & up to 90°.
The design formulas for different offsets follow.

sin @ = {20a)

-4\ 3/ }
(AT av/4
1 ARVAWA J ffa-d
"?:Mx \\ K 4:2

-4 \\‘ AT
NN
y NN A
ia #tf1 357 n©e
%

Fic. 8. Relative weighted tracking error wvs,
relative groove radius for oflset arms.

For @ £ oy, we obtain:
= (22 — x1) \/E&l—ixz + x;

——'11'1 - ﬂ}z — M"mu

— i \
{x* + ) cosa 2 s a& :

' (-:?)’(x = x1) {x + % — 2sin a) — (:—’),(x, ~ x)(xz + x — 2sina)

i 1 (21)
[#'] max (%2 — 1) (xg + xy — 2sina)
o pom 'ty ) sina—1, . _ . - 1

25 -2 =2 e R i § = Oforsin e P | j

For a = 0, this reduces, of course, to equation 15. For o € a €
SXopt - ,

; —
2cos G’JE;\/Sin’ a + (x; — sin «)? — sin a‘ 1

""]’0 = ’?’2 = |ﬂrlmax =

: _”‘*;1 - z_sicn_u'*'[x/sin’a+ (s — sin a)? — {x; + sin “’]':_:E  (22)

7
[n” |max A/sin? &« + {x, — sin a)? — sin @

x . . . o
o= sinzaj‘/sm'“ + {x; — sin a)® — (x; — sin a)‘; —~05 — 5% = xysin o
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For a ..>f Xopt »

1
'l'; —q'o = |ﬂ'lm: = ‘J%{‘\/sin’a—k (sina — xl): - sin a-}

2cos
' xlj -'\/sin’a-i- (sitex — 2} + (sin o — xl)]ﬂ$
v i x?

|“I'Im sin*a + (sin o — x) —sina 1

2sin o
1- x + p (23)

ﬂ“;i"nﬂ-.'m‘;‘!/siniu + (sina — %1} + (sinw ‘—x1)£ i — 25 —8 = xgsinm

z -
=TT
/__/
}’/ _.--/’—’/_.-a—""
e o rise=tca
o =T

-

- m.Lumulm ulu ' qu s E
. (]

. & 7 (s}

F16. 9. Numerical example: = Plats of weighted tracking error and distortion

of optimally hung arm vs. groove radius for various offset angles.

Y

Conditions are illustrated in Fig. 9 which shows plots of weighted
tracking error and associated harmonic distortion for 2-mil elongation
at 500 cps vs. the groove radius, for an 8-inch arm and 12-inch
disks, with r, = 2 inches, r, = 6 inches. The straight line I refers
to the case of zero offset and underhang, which gives, according to
eq. 14, 7' = xn/2 = 0.217 rad. = 12.4° or 4.8 per cent distortion,
according to 12, Curve II represents »'(x) for a = 0 and optimal
underhang 8§ = %/10; d = 0.45 inch, according to eq. 15, resulting in
|| max = 0.173 rad. = 9.9°; the curve is the same as in Fig. 7 fora =
3, with different scales. The angle ay where §, = 0, becomes
sin ag = 3/, ap = 10.8°, according to eq. 19; the associated 5'(x)
with |n’|mex = 0.11 rad. = 6.4,° is plotted as curve I7I; it leads to
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v2 = a + 1 = 22°, which is only 4/;° larger than for &« = 0. Curve
IV belongs to an angle « which is still <, but close to, oy and > an:
sin @ = %/y, &= 16.6°; |7'|max = 4.4°; @+ m = 24.3°. According
to eq. 20, sin g = %/, e = 18.7°. Curve V refers to
sin o = 3/y, @ = 20.9° which is > a4, As different from IV, the
minimum occurs no longer at x = x,, but at x; = 0.290, according to
equation 22, —9'1/|nluax = —0.863; [n'|max = 0.0538 rad. = 3.08°;
a 4+ m = 26.2°. The curve VI, the same as in Pig. 8 for ¢ = 3,
represents the second-order Tchebychev approximation, with sin oy

- b | . o
Q2 lm m\;“ 40

-
u'}.p‘/r/

&‘. -’5 / -300
w2 | A |

PYRR x | / P /{/ 20° :

/ 'Imax
Qo8 20" .
17 °
o ‘ 20! 30b qor &
P
Y _/_ it o

Fig, 10. Numerical example: Plois of various parameters »s. offset
. angle,

= 1, tope = 25/4°% %0 = /5; |7’ |max = 0.0343 rad. = 1.97°. The
improvement over the straight arm, curve II, is striking. a,, +
m{agpt) = 28%/,°. Finally, curve VII pertains to sin o« = /5, & =
30° > aope, With 1%s < —7's = [1'|max = 0.059 rad. = 3.38°; 2y =
0.405; n'g/fn’lmx = L/y according to eq. 23. It is seen that thein-
crease of xy and decrease of 1's/ l’_’"mu is comparatively slow above
dppt i accordance with the fact that the critical angle {eq. 202} is
usually non-existent; in the present example, 2 = s, 7's/|7"|mex =
—1/yfor a = r/2, according to eq. 23. '

Fig. 10 shows the dependence of the optimal numerical underhang
or overhang, of the associated maximum weighted tracking error,
and of the angle (o + fmgy) Which occurs in 175, on the offset angle a.
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The curves refer to 16-inch disks and 33!/; rpm, with L = 12 inches,
r1 = 3.6 inches, r: = 8inches (x; = 0.3, x; = ?/;3). The characteristic
angles are ag = 12°, oy, = 20.7°, and oy, = 26.5°. The kinks
of the curves at @ = a,,; are due to the Tchebychev condition. The
minimum of [rp [ myx Tepresents, according to 12, a maximum distor-
tion of only /; per cent, while about 2!/; per cent is obtained for
the straight arm, which is somewhat more than the permissible limit.
It is seen that « may be chosen considerably below a,,, without in-
fringement on the distortion limit, but that the resulting reduction
of the vertical force IV is comparatively modest, because (a + )
increases only slowly with o for & < agp. I @ > ayy, 7'z becomes
rapidly < 9y {curve VII of Fig. 9), and for a certain angle a', 7 be-
comes = n; for & > @', Nmax = M.  According to eq. 23, it is

sin o’ =x,[\/2(1 +;E) ~ 1] (m = m)

and - ; (24)

tana [Jl+(1——-—- —l]fora 2 a

Thus the curve {a -+ fmay) has 2 kinks: at a = ey, and a = o',
The line a is shown for comparison; it is seen that for a 2 g,
Tmax & @, a8 expected for nyn., = m.  Therefore @ may be used in-
stead of & -+ Npmax = Ymax it the estitmate 175,

In order to obtain the influence of inaccurate mounting on tracking
distortion, it is necessary to supplement the preceding calculations
which concerned the case of optimal overhang —3 for variable offset
angle, by those for variable 4. It has already been mentioned in con-
nection with the straight arm design that distortion increases rapidly
if the underhang is increased beyond the optimal value, while a de-
crease is much less harmful; it can be shown that the ratio of the two
effects is (ra/r,)2.  This is easily understood on the ground that the
design is based on the weighted tracking error. Conditions are there-
fore most critical at the inner groove radius. This is true not only
for straight arms but for all under-critical offset angles. An illustra-
tion is given by Fig. 11, which shows ln’ |mu versus —& for the same
numerical example as used in Fig, 10. The curves are plotted for the
fourcases ¢ = 0, @ == ay, @ = gy, and @ = auy. The unsym-
metry noted for a = 0 persists up to oy, while the mounting be-
comes more and more critical with increasing offset angle due to the
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decrease of [q’ Im(ﬁ.,pt). For a > ayy, the steepness of ascent for
8 < 8,5 increases rapidly, due to the appearance of the minimum .
At o = agy, the inclination on the side of positive (8 — &,p) is still
substantially unaltered, but the side of negative (8§ — &) is now
the steeper one. At the same time, the influence of the mounting
becomes most severe, which is understood, as the optimal approxima-
tion is achieved through compensation. In the present numerical
example, a deviation |5 -— Boptl of about 4.10~? corresponding to a
mounting error of only */s inch, already doubles the value of lﬂ'lm-
The full realization of the second-order approximation would thus
call for an accuracy of a few tenths of a millimeter. But as the dis-

h ”
oM lmax

P N N
B R
._L.r N AN /.

M et

e .
Tol 068 405 A 27 § o#i ard a66 @B 4i -

Fic. 11. Numerical example: Distortion vs. mounting error for characteris-
‘ tic offset angles.

4

tortion associated with the minimum of [n’ Im,-, is far below the per-
missible limit, requirements can be considerably relaxed, under prac-
tical conditions. Liberal mounting tolerances of about !/; to 1 per
cent of the arm length or =1/, to !/s inch will be permissible in most
practical cases. They are easily determined by calculating the
slopes of the |€|me,—6 curves at both sides of § = 5y, (a). For all
designs with @ < e, which were found preferable on account of the
decrease of F, {(I7), an overhang § somewhat lfger than 8, should
be prescribed, which is likewise found in terms of the two slopes.

(f) Design of Multi-Purpose Arms~—When it is desired to play
records of different sizes and/or speeds with the same tone arm, this
should be designed on a compromise basis 5o as to render as small as
possible the maximal tracking distortion occurring under any condi-
tions thus included. As the mean radii r,, of different types of disk
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records are different, the design is ba.sed on the original relations 10
and 14 or 18a combined:

o v _sina %o —25 — &
¢ 215G cos o (1 ( )) %o = sin o (25)

It should furnish for a and xy such values that minimize |¢|gq, simul-
taneously for the different types of records which are characterized by
their values of , r, and r;, » being considered as constant (4. e., 8
cm/sec at 500 cps for permissible Hmu = 2 per cent). In practice,
only the following combinations are used

(1) 78 rpm; 7y ~ 2 inches, ry ~ 6 inches

(2) 78 tpm; r1 ~ 2 inches, r2 ~ 8 inches .

(3) 831/, rpm; r ~ 31/, inches, ry ~ 8 inches

For design purposes, (1) can be disregarded as it is fully included in
the range of (2). Using upscripts in referring to (2) and (3), the
following six values have to be considered as potential maxima of
distortion

A,m=|1—‘-"i“‘ - "’“) &t = i ~ sin o,

(8 x(®) xp
sinafy i .:.,<=>—234|1 - S‘“_“(z— l Af® = 234)1 — S @],
x'g") xl(n

x5() (8
. _sinaf,
Byl 2.34] xz“} xu“)

Here, A stands as abbreviation for (210 cos a)l ¢|/v with
3y = 787/30 sec™!; 2.34 = ratio of the two speeds. As'™ has to be
omitted if %™ € 6, (¢ = 2 or 3) as being outside the playing range.
The optimal numerical values of x; and sin « are those which minimize
the largest of the four to six A’s, {. e., which make the three largest of
them equal. As™ can obviously be omitted from the comparison, but
not necessarily A™, as xy may be < ¥ but > x,®.

As an example, the design of a double-purpose 12-inch arm is given.
The numerical limit radii are x,® = 1/, ,®) = 7/24 and %® = 5% =
2/;. It is found that for |A,‘”i = |A “’[ = | 8% = Apars | 2P <
Apax a0d £, > % = 0.288;; sin & = 0.344; a = 20.1°. § = 0.050,,
d = 0.61; inch. Fig. 12 shows the resulting distortion ¢, according
to 25, for v = 8 em/sec at 500 cps; its maximum is only 1 per cent.
This is only half the permissible limit and leaves thus a safety mar-
gin for inaccurate mounting. It isseen that x,is only slightly < % =
0.292; 1. ¢., for the speed 331/, the design is close to that for a = ayy;.
For the speed 78 rpm, on the other hand, a > ay,,, and the overhang

;A = 11 -
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—& < —dyp (). If the same arm were to be used for 78 rpm alone,
the optimal design as given by equation 16 would be: o, = 199,

—dopt = 0.532 inch, | !mu = (.39 per cent; if it were designed for
use at 33!/5 rpm alone: o5 = 26°, —dop = 1.023 inches, f |m,, =
0.36 per cent. It is seen that the double-purpose design lies closer to
the first case.

OTHER EFFECTS OF TRACKING ERROR

The barmonic distortions due to tracking error depend, as shown,
only on the distortion parameter ¢ (4¢), <. e., on the weighted tracking
error 3' (11). Consequently, the design was based on this quantity.

A /
ad \ /1A

5 c \ 1/
~a2s] \ a Rﬁld
ii

\\‘_‘d’/y i

-0.5 Y
q
| —Q74

-ronig? ' L// .
‘ 2 25 3 35 4 ‘ 5 [ 7 a

T ININCHES

Fic. 12, Numerical example for multi-purpose arm design:
Tracking distortion over playing range.

There are, however, effects which depend on the tracking error » itself
rather than on »'. Although they are in general unimportant, they
should at least be mentioned here.

Going back to the rigorous expressions 6, 7, and 8 for the picked-up
signal, it is seen that this contains the factor sec ». This implies an
increase, not only in signal amplitude, but also in the lateral reaction
force (both stiffness and inertia), by sec n. This increase, however, is
of negligible magnitude for all practical purposes although the design
‘minimizing |ﬂ |,lllml does not minimize |n[“m The largest value
which » may take occurs at the outer rim for straight arms. It was
shown (Part II, 5} that even for maximal permissible distortion—
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which is nearly obtained with a properly underhung 8-inch arm for
12-inch records— e = 18°, 4. ¢. (sec 2 — 1) = 0.05 < 1. Thisis in
line with the assumption #%/2 << 1 on which the design procedure
was based.

It has been claimed that tracking error may cause appreciable
record wear. Again, this supposed wear would not depend on 3" and
therefore would not be minimized by the proposed design. But, asin
case of the signal amplitude, it does not seem that, within the per-
missible range as based on the presented design method, tracking
error could have any noticeable effect of this kind. No clear experi-
mental evidence of additional record wear caused by tracking error
of ustual magnitude has ever been presented. Careful listening tests
undertaken by Olney? did not reveal any clear effect. Besides, it is
hard to understand how record wear could ever be produced by track-
ing error of permissible magnitude. For permanent stylus points,
it is certainly ruled out as they are surfaces of revolution. All com-
mercial light-weight pick-ups have permanent styli. In case of steel
‘needles, on the other hand, high stylus tip pressure and motional im-
pedance cause appreciable record wear, guite independently of the
tracking mechanism. Wear due to tracking error is supposedly
caused by the rate of change of tracking error along the groove spiral:
the needle is initially ground to fit the groove and is therefore no
longer a surface of revolution; turning about its axis due to change of
n therefore entails regrinding of the projecting edge. It is certainly
hard to see how this regrinding which occurs very gradually as com-
pared with the initial grinding in the first few grooves, could possibly
cause any wear noticeable against the background of that due to ex-
cessive stylus pressure and impedance, as met in cheaper grade pick-
ups.

I wish to tender my acknowledgment to the Brush Development
Company for making this work possible. I am also obliged to Dr.
S. J. Begun, head of the recording department, for hints and en-
lightening discussions.
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